

Common Component Architecture Demonstration

PI: Daniel Katz, JPL

Objective

- Examine Common Component Architecture (CCA) for
 - Usability by Earth science modelers
 - Performance Penalties
- CCA:
 - Allows elements of large, complex, parallel applications (called components) to be written by independent groups to a defined interface
 - Standard-compliant components guaranteed to work w/each other and w/standard-compliant frameworks
 - CCA Standard developed by DoE/Academia from 1998

Approach

- Build simple single and dual component applications to study basic CCA overhead and learning curve
- Modernize UCLA coupled climate code for Linux
- Build CCA version of UCLA coupled climate code; measure overhead vs. base application

Key Milestones

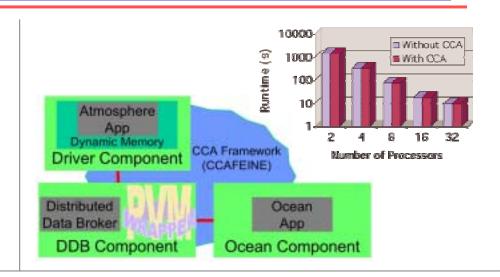
 Rep 	port on basic sequential CCA application	5/02
 Rep 	port on basic parallel CCA application	9/02
• UC	LA Data broker + OGCM running on parallel Linux	
tes	tbed, using MPI	3/03
• Rep	port on CCA version of simplified UCLA climate app.	9/03
 Mo 	dernize UCLA climate application and report on	
CCA	A version of coupled ocean/atmosphere/data broker	
app	olication	5/04

Partner: R.Mechoso/UCLA

 $TRL_{in} = 2$

Common Component Architecture (CCA) Demonstration

PI: Daniel S. Katz, JPL


Objective

Common Component Architecture:

- Allows elements of large, complex, parallel applications (called components) to be written by independent groups to a defined interface
- Standard-compliant components guaranteed to work with each other and with standard-compliant frameworks
- CCA Standard developed by DoE/Academia from 1998

Objective: examine CCA for

- Usability by Earth Science modelers
- Performance Penalties

Accomplishments

- Demonstrated componentized sequential and parallel application (driver/AMR library) running with <1% overhead and no adverse affects on scalability with fairly short porting effort.
- Improved UCLA climate model
 - Developed PVM_Wrapper software (released through Open Channel Foundation) to permit use of MPI in model
 - Ported Atmospheric Model to use modern Fortran90 dynamic memory in place of previous vendor-specific solutions
- Demonstrated componentized version of UCLA climate model running with <5% overhead
- Participated in 10 CCA quarterly meetings to ensure planning for CCA included NASA considerations, including hosting 1 CCA meeting co-located with ESTO CT PI meeting to promote CCA/CT understanding and collaboration
- Participated in presenting 6 CCA tutorials to ensure reasonable learning curve for new CCA users, including 1 tutorial for ESTO CT PIs.

Collaborators: C. Roberto Mechoso/UCLA, Craig D. Miller/JPL, Charles D. Norton/JPL, Joseph Spahr/UCLA, E. Robert Tisdale/JPL

 $TRL_{in} = 2$; $TRL_{out} = 4$

